
Integrating PDF interface into Java application

Abstract
Purpose – The purpose of this paper is to propose a novel approach to integrate PDF
interface into Java-based digital library application. It bridges the gap between
conducting content operation and viewing on PDF document asynchronously.
Design/methodology/approach – In this paper, we firstly review some related
research and discuss PDF and its drawbacks. Next, we propose the design steps and
implementation of three modes of displaying PDF document: PDF display, image
display and XML display. A comparison of these three modes has been carried out.
Findings –We find that the PDF display is able to completely present the original
PDF document contents and thus obviously superior to the other two displays. In
addition, the format specification of PDF-based e-book does not perform well; lack of
standardization and complex structure is exposed to the publication.
Practical implications – The proposed approach makes viewing the PDF documents
more convenient and effective, and can be used to retrieve and visualize the PDF
documents and to support the personalized function customization of PDF in the
digital library applications.
Originality/value – This paper proposes a novel approach to solve the problem
between content operation and the view of PDF synchronously, providing users a new
tool to retrieve and reuse the PDF documents. It contributes to improve the service
specification and policy of viewing the PDF for digital library. Besides, the
personalized interface and public index make further development and application
more feasible.
Keywords Portable document format (PDF), Java, User experience, Integrated
interface, Index mechanism, Digital library
Article Classification Technical paper



Introduction
Nowadays, there is a large number of PDF documents in digital libraries and

full-text databases, such as e-books, e-journal and other relative files (Adobe Systems
Inc., 2012). They are increasingly popular and significant to libraries (Nelson, 2008).
The PDF documents carry a combination of information in various medium formats,
such as text, image, font, color, symbol and shapes, etc., which bring the readers an
unprecedented reading experience. Compared with the media formats such as TXT,
HTML and XML, PDF has the advantage of making describing and printing a
document easier (Adobe Systems Inc., 2012).

However, the PDF has its inherent defects. Most PDF documents do not have
basic high-level document logical structural information, which makes the retrieve
and reuse of the documents difficult. Moreover, Wang pointed out the drawbacks of
PDF (Shaofeng, 2004), including:

 Lacking of a powerful search engine to deal with the structure and content of
the document.

 Being difficult for users to have different access privileges on different parts
of the document.

 Being difficult to provide personalized interface for users.
All of these defects will greatly limit the access to PDF and its circulation in the

digital library. Though there are many readers and analysis tools about PDF in reality,
they are always either displaying the PDF document alone or analysis of the PDF text
content. For example, Adobe Reader, Foxit Reader, etc., can display the PDF
document completely but don’t have the function of analyzing the text content on
PDF. Like the concordance (Watt, 2012), TextArc (Paley, 2002), FeatureLens (Don et
al., 2012), ProfileSkim (Harper et al., 2006) and iSee (Sun et al., 2008), though they
have a strong ability of text analysis, they are not good document readers. At present,
if we want to view and analyze the content of PDF documents, we will have to
abstract the PDF text content in a document reader and put it into a analysis tool. It
not only decreases the effectiveness of reading and learning, but also affects the
efficiency of search and retrieve. Veronica et al once compared searching in realistic
books (Liesaputra and Witten, 2012) with searching in PDF files, the result
demonstrated that the searching in PDF files couldn’t satisfy the users (Liesaputra et
al., 2009). The users found it hard to understand the structure of the PDF document,
not knowing where they were since they are easily disoriented and finding it difficult
to return to a specific location (Liesaputra et al., 2009).

Therefore, we propose a novel approach to solve this disjunction problem
between content operation and the view of PDF synchronously, namely integrating
PDF interface into Java application. First, we analyze the current relevant research
and applications about the PDF. Based on current research results, we design three
modes to integrate the PDF document content into Java panel. After comparing the
three experimental results, we demonstrate that integrating the PDF interface into Java
application can completely display the PDF content and improve the view and search
experience on PDF documents.



Related research
The portable document format (PDF) is widely accepted as a digital archiving

format and PDF documents are supported in virtually every repository (Seadle, 2009).
Its platform-independent and openly accessible feature makes it the ideal file format
to release and disseminate electronic documents in the digital library (Adobe Systems
Inc., 2012). Though some discussions on whether PDF formats are appropriate for
long-term digital archiving (Seadle, 2009; Zhao, 2011; Uneson, 2005), there is no
doubt that the digital library has become the main aggregation of the PDF (Vasileiou
et al., 2009). Several major publishers, like Elsevier, Emerald, Wiley and Springer,
provide large numbers of academic e-books and e-journal based on the PDF format.
Their target market mainly focuses on the libraries - academic, public and special
(Vasileiou et al., 2009). Therefore, the electronic books have a more significant
potential to impact users’ reading experience (Liesaputra et al., 2009), with important
consequences for the future role and existence of libraries (Vasileiou et al., 2009).

At present there are many types of e-book format in the market. Vasileiou et al.
analyzed the main websites of nine e-book publishers and eleven e-book aggregators
and found that the most common format of e-books appears to be PDF. While the
majority of vendors use PDF, a couple of companies provide their content in HTML,
such as Knovel and Gale. However, Ebrary uses its own EDF format and Questia uses
XML (Vasileiou et al., 2009). In addition, Thomas et al. built the JSTOR system to
scan the documents and convert them to the images. Although this method can create
the content identical to the original document, its generated images lose the textual
context in the original document and fail to search the full text in the generated image
files (Thomas et al., 1999). Patrick van et al. developed i*Doc that is based on the
Extensible markup language (XML) which can serve as integration format and deliver
the personalized contents (Patrick van et al., 2000).

In order to explore the differences among the commonly used electronic formats,
many researchers try to distinguish these formats from different perspective. Shaofeng
indicated that though HTML was designed to describe the structure of the document
and thus concerned the appearance more than the content of the document, it has
weakness in retrieving and printing the electronic document as well as other problems
(Shaofeng, 2004). He also made a comparison between PDF and XML, the result
shows that though the PDF has the advantage of describing and printing what a
document looks like, the non-structure and access privilege control make it hard to be
searched and reuse (Shaofeng, 2004). Furthermore, users criticized that all the clients
have the same interface. By contrast, the XML can achieve efficient retrieval and
personalized customization by the third-party software (Shaofeng, 2004). Zhao and
Uneson then compared the PDF with XML from a perspective of long-term
preservation (Zhao, 2011; Uneson, 2005). The results demonstrate that the PDF is not
the best choice for retrieving and reusing, and the XML does not have the absolute
advantage of fully preserving the appearance of an electronic document.

All in all, the researchers found the main drawbacks of PDF are about supporting
search and extraction function, and began to look for new ideas of extracting PDF’s



content and structure to achieve the goal of retrieving and reusing the PDF. Numerous
studies have shown that the structured content is more effective to obtain information
accurately and quickly. There is need for extracting objects in a structured form and
saving the document in XML format in order to allow indexing, more accurately
searching, and dealing with versioning and Meta data. Initially Hadjar et al. proposed
a new tool to extract text, images, and graphics from a PDF document, but did not
consider the hidden layout and logical structures of documents (Hadjar et al., 2004).
Consequentially, Chao and Fan made a further improvement, developing techniques
that identified logical components on a PDF document page. The outlines, style
attributes and the contents of the logical components were extracted and expressed in
an XML format (Chao and Fan, 2004). Still someone try to convert the PDF to other
formats. For example, Rahman and Alam converted the PDF into HTML (Rahman
and Alam, 2003), Déjean and Meunier converted PDF document into structured XML
format (Déjean and Meunier, 2006), and Zhang converted PDF files to XML files
(Zhang, 2008) and so on. Unfortunately, these conversion and extraction lost the
original appearance of PDF files, such as font, image and paragraph information or
others. But these techniques do facilitate the retrieve and reuse of the layout and the
content of a PDF document page.

Research shows that the complete display of original document information
contributes to faster learning and retention, and thus leads to more effectively
searching and higher satisfaction (Ahmed et al., 2006). However, one of the
significant challenges with PDF accessibility is the lacking of effective ways to unify
content operation and the view on PDF synchronously. Thereby, it is difficult to
design the user interface that embeds the PDF document into applications. Though
several applications are now available, they are just online service, such as Scribd for
viewing and storing, Pdfvue for online editing, and Zamzar for PDF Conversion.

The preparation for integration
To enable the user to interact with the PDF document friendly, we should consider

the user's demands before designing the interface:
 The contents of PDF document should be displayed completely, including the

picture, graph, font and others;
 Operation and view should be in the same interface synchronously, avoiding the

shifting among multiple interfaces;
 User could integrate suitable application into the interface to aid them analyze the

contents of PDF document;
 The application could be run on every platform and suitable for e-book based on

the PDF format.
Based on these requirements, we develop an application that provides users with

the following functions:
 Allowing the user to view multiple PDF documents via the interface;
 Achieving the synchrony between content operation and the view of PDF ;



 Providing the index file for the developers to enable the further development and
then more applications could be integrated into the interface.
Therefore, we propose a new tool to integrate the PDF interface into Java

application. The framework of its design is presented in Figure 1. We design our tool
in the following steps.

Figure 1.The framework of design
1).The PDF converting. We find it difficult to display the complete original

information of PDF document through calling the APIs directly provided by the
Adobe, which may lost the paragraph information. Therefore, we should first convert
the PDF format to other formats. Considering the fact that XML (W3C, 2012), a very
flexible file format, is widely used in information storage, information interchange
and other aspects (Moghrabi et al., 2004), and can do what Java has done for
programs. There are also a number of research achievements on XML application
(Luk et al., 2002; Chu et al., 2000; Zhang et al., 2008; Geroimenko and Geroimenko,
2001; Lu et al., 2008). These advantages prompt us to choose it as the converted
object. The specific process can be found in a paper by Zhang (Zhang,2008).

2).The index construction. That what kind of index should be constructed will
affect the performance of retrieve. Moskovitch et al. made a comparative evaluation
of full-text, concept-based and context-sensitive search; they demonstrated usefulness
of concept-based and context-sensitive queries for enhancing the precision of retrieval
from a digital library of semi-structured clinical guideline documents (Moskovitch et
al., 2007). Jimmy’s results suggest that the highest overall effectiveness may be
achieved by combining evidence from spans and full articles (Lin, 2009). Then we
constructed a XML index mechanism from sentence to page. The index is mainly
used for the synchronous mechanism. We could make a further application
development with the aid of it. Through the converted XML file, we could build the
index. The specific process will be revealed in a follow-up paper. The specific index
mechanism will be illustrated in next section.

3).Interface design. In this step, we develop a specific Java application to contain
the PDF document. We choose Java as our development language for it is
platform-independent and can run on any computers that have the Java’s runtime
environment, or virtual machine. The combining XML with Java keeps its



cross-platform features effectively. Another reason is that Java provides the needed
technologies for XML. For example, JAXP allows integration of any XML parser
with a Java application in order to read, manipulate and generate XML documents.
The specific interface layout is as follow:

Figure 2.user interface (the area of A contain the PDF document content, the
area of B could be integrated application)

4). The PDF integration. In the above relative researches, we mention some
different ways to view an electronic document. In order to clearly identify what kind
of interface display is more suitable for users, we design three modes. The first one
contains the PDF format, the second one contains the image format and the third one
contains the XML format. Through the mutual comparison, we can easily find what
interface display satisfies user better.

The implementation procedure
We choose a general e-book, containing the table of contents, body and pagination,

based on the PDF format as a sample, and then elaborate the implementation of three
modes from the following aspects: how to embed and how to synchronize

How to embed the PDF document content into the interface
After conversion and extraction of the e-book’s information, the designed tool has

the ability to integrate the e-book into the Java panel. The designed tool provides a
friendly and reliable way to browse the e-book’s information. User could browse the
e-book by the following three ways.
1) Embedding the XML into the interface.

 First, we need the XML file derived from the converted e-book through the
conversion method (Zhang, 2008).

 Second, we exhibit the XML information on the Textfield component added
into the area of A through the Java API, namely dom4j.jar. This library could
read the XML information and print it on the screen.



 Third, in order to visit the XML information conveniently, we design a
content tree that can jump to different position in this development. You can
design other functions to visit the XML information.

Figure 3.XML display
2) Embedding the image into the interface.

 First, we need to convert the e-book to images through the pdfview.jar
provided by the sun company. We mainly use the class of PDFFile.java and
PDFPage.java drawing the e-book page.

 Second, we add a Label component into the area of A and use the Label
component to exhibit the converted image. We can scan every image
according to the selected page number or content information.

Figure 4.Image display
3) Embedding the PDF into the interface.
 This approach mainly uses the ICEpdf.jar to exhibit the e-book on the area of A.

We add a panel component into the area of A and put the e-book into it. Through
this way, we can easily scan the original PDF format. Besides, this java package
also provides us many useful tools. The mainly embedded code are as follow:



Among them, pdfcontroller, factory and viewConponentPanel represent the Java
classes, pdfUrl represent the e-book save path. The interface is as follow:

Figure 5.PDF display

How to accomplish the synchronous mechanism
Our research goal is more than browse the e-book content information. More

importantly, we provide the synchronous mechanism to operate the e-book. We can
not only exhibit the e-book information, but also support the user API to integrate
more applications in this interface. User operates the XML index instead of the PDF.
Of course, all of these benefits are from the establishment of the index.

The index mechanism: we construct three-level index in the XML file. First, the
structure of index is like this, a root node as the catalog and its sub-note is the chapter;
similarly, the sub-note is the section and the lowest level is the sentence. We could
obtain the node information from the converted e-book, namely the XML file.
According to the contents included in the XML file, we could establish tree-based
XML index from chapters, sections to logical page number. However, it needs further
processing to obtain the node of sentence information. Second, through scanning the
XML file, we segment the e-book on the basis of sentence and add the sentence nodes
into the section’s child note. Third, in order to exactly locate where the sentence
occurs, we add some attribute into the node. The main goal is to achieve the
correspondence between the physical page and the logical page. The final index is as
follow:

SwingController pdfcontroller = new SwingController();

SwingViewBuilder factory = new SwingViewBuilder(pdfcontroller);

Jpanel viewConponentPanel = factory.buildViewerPanel();

pdfcontroller.openDocument(pdfUrl);



In above index, we label the start logical page and end logical page in the chapter
and section, and also set their chapter and section name and count the number of
chapters and sections in the entire e-book. In addition, we use a node to store the
sentences in every section. After these settings being completed, we could display and
find the information synchronously.
1) The synchronous mechanism of XML.

Because the index derived from the XML file, we only find the node that you
select and print the information on the screen.
2) The synchronous mechanism of image.

Because many e-books’ contents do not start from the page number one, there is
an inconsistency between the logical page and the physical page. To solve this
problem, we should record the physical page numbers before the article body starts if
the article body starts from the logical page one. We call this page numbers “distance”.
This phenomenon is also suitable for the synchronous mechanism of PDF.

When finding a sentence, we first find the logical page number from the index.
But this is not the eventual pagination, we need to use this numerical value to add the
“distance”, then the eventual value is the physical page numbers where the sentence
occurs. Next, we find the image by the sequences and return it to the Label.
3) The synchronous mechanism of PDF.

Because of the “distance”, we can’t direct to the page according to the logical
page number derived from the index. We should add the logical page number to the
“distance”, and then obtain the eventual pagination. Next, we could call the function
that ICEpdf.jar has to direct to the page.

Results analysis and discussion
Through three modes’ implementation, we could present the content of PDF

document by three different formats. However, their performance differs. We can find
something among them, as shown in Table 1:

<?xml version=”1.0” encoding=”utf-8”?>
<catalog>
<chapter chaptername=”chapter0” startp=”1” chaptercount=”1” endp=”12”>
<section sectionname=”section1” startp=”2” fullseccount=”2” endp=”4”>

<sentence startp=”2” fullcount=”60”> this is an information age. </sentence>
…

</section>
…

</chapter>
…

</catalog>



Through table 1, we can clearly find that the PDF display is obviously superior to
the other two in the integrity display of the PDF document content. It can almost view
the PDF document content completely. For example, a graph can be presented
completely in PDF display, but it is none in the other two, as shown in Figure 3,
Figure 4 and Figure 5. In terms of efficiency, despite the poor performance of XML
on display, but it runs the fastest. When meeting the PDF documents that contain
almost entirely of simple text, the XML display may be a good choice, like the
document of literature, history and philosophy and so on. But if you view an album of
art, the image display may be a better choice. We could choose different modes to
view a PDF document according to the real problems. Of course, we can also identify
their performance from the aspects of aesthetic feeling, usability and legibility. In
short, embedding the PDF is an effective and suitable way to display the original PDF
document content, and can improve the user experience.

The significant contribution of this study lies in integrating PDF interface into the
Java application to achieve the goal of viewing and operating the PDF document
synchronously. Based on this study, practical implications are discussed. It can
improve the digital library’s usability from four aspects.
 First, it can be used to retrieve and visualize the PDF document. Digital library

provides a comprehensive collection of digital resources and services that are
accessible through the Web. Every day there are large amounts of search
behaviors. The search engine always provides a set of keywords for users, but the
major search engines typically do not index the content of PDF documents at all
(Lawrence et al., 1999). Therefore, users can retrieve the XML index to achieve
the goal of retrieving the PDF document. If possible, it will make for the digital
library to construct an index library of PDF document content based on XML. In
addition, we can visualize the PDF document information by the XML advantage
of storage content, as shown in figure 6. This will greatly enhance user retrieval
and reading efficiency. It could also be used in other areas such as the
anti-plagiarism services (Patel et al., 2011), e-commerce (Seng and Lai, 2010)
and teaching (Carlock and Perry, 2008), etc.

 Second, it can be used to support the personalized function customization of PDF.
Due to the limitation of security and privacy in PDF (Castiglione et al., 2010), the
available tools or software are very few and their functions are also limited. Users
can not customize the required functionality according to their own preferences.
Kani-Zabihi et al. have surveyed the digital library about what do users want and
found that based on users’ previous experiences with digital libraries, their
requirements with respect to specific features may change (Kani-Zabihi et al.,
2006). Many researches emphasized the importance of user-centered design. Our
study provides the interface and index for the researcher to make a further
development. For example, users can integrate the Lucene into the interface to
help them view and analyze the PDF full text content synchronously. Besides,
users can also put the visual information of PDF full text content into the
interface to aid them browse and view. As shown in Figure 6, in a related
research, we use a series of concentric circles to visualize the full text, a certain



chapter, a certain section and a certain paragraph in one book. When a paragraph
object in section 2.3 is clicked in the visualization area, the corresponding text
and its context can be shown synchronously.

Figure 6.The visualization of PDF content
 Third, it enhances the user experience in digital library. Whether the field of

computer science or information science, one of the focuses is always on the user
experience and yet one of the most obvious factors is user interface (Marchionini
and Komlodi, 1998; Bates, 2002; Ahmed et al., 2006; Davis and Price, 2006).
User interface is the way through which a user can communicate with particular
software. Berg et al. also indicated that the usability of a given interface should
be a primary consideration when investigating e-book platforms (Berg et al.,
2010). And their experiments showed that the information-seeking and
content-viewing that are not on the same page would greatly affect the user
experience. Our study integrates the PDF interface into the java application.
Users can synchronously view and operate the PDF document on the same page.
The PDF display can completely exhibit the PDF document content and provide
the navigation through browse, search, and indexes for user (Browne and Cue,
2012). It helps to decrease the user cognitive load of reading and learning.

 Fourth, it improves the service specification and policy of viewing the PDF in
digital library. Most digital libraries always provide the way of metadata and
downloading for viewing the PDF. And sometimes when viewing the PDF files
in the browser, an additional browser plug-in is needed. This dependence on the
software or plug-in makes it inconvenient to use the PDF because it is not easy
for clients to download and install the additional software or plug-in. Generally,
our study will help to solve the dilemma and develop a new standard of browsing
the PDF without downloading. The aided analysis and synchronous display the
PDF online will change the traditional way of viewing PDF, rather than requiring
users to download and then view and analysis. Furthermore, the personalized



interface and public index make further development and application more
feasible.

This study has some limitations. First, the sample might not be able to represent
the general PDF document. Our survey finds that different publishers have different
standard specifications. The different e-journals or e-books based on PDF in the same
publisher still have different standard specifications. Even the same journals in the
same publisher still have the different styles in different time periods. Especially, a
special phenomenon occurs in publication, which is that the table of content
sometimes cannot match the actual page number, which influences the structure of
automatic extraction and the synchronic mechanism. Second, index of the PDF
document mainly reflects the relationship between sentences and paginations. Its
precision cannot reach the index of words. Third, we have not integrated useful tools
into the interface. Further researches are discussed in the conclusion section to
respond to the limitations of this study.

Conclusion and future work
There is a large amount of PDF documents existing in the digital library. Many

technologies have been proposed and used on viewing or seeking PDF documents,
such as conversion and extraction. This study proposes a novel approach to view and
operate the PDF document synchronously in the same interface. Meanwhile, we
demonstrate that the PDF display is apparently superior to the image display and the
XML display in terms of the original exhibition and user experience. And it has
potential advantages compared with other PDF readers in digital library. The main
contributions of this study can be summarized as follows: (1) a novel approach to deal
with the PDF document is recommended. (2) Integrating PDF interface into Java
application to achieve the goal of viewing and operating the PDF document
synchronously. (3) A new indexing mechanism has been designed and implemented,
which is conducive to the further development. (4) Contributing to improve the
service specification and police of viewing the PDF in digital library. Therefore, it
could be regarded as a new way to bridge the gap between content extraction and
original exhibition on the PDF document.

However, there are still lots of work to do in the future. Different ways of
extraction and index should be provided for different styles of sample. In addition, it
is worth to make the further application development in this integrated interface. Of
course, it is still a key point to enhance the interface and its interaction with users.

References
Adobe Systems Inc. (2012), "Adobe Portable Document Format", available at:

http://www.adobe.com/products/acrobat/adobepdf.html(accessed 5 March
2013).

Ahmed, S.Z., McKnight, C. and Oppenheim, C. (2006), "A user-centred design and
evaluation of IR interfaces", Journal of Librarianship and Information Science,
Vol. 38 No. 3, pp. 157-72.

http://www.adobe.com/products/acrobat/adobepdf.html


Bates, M.J. (2002), "The cascade of interactions in the digital library interface",
Information Processing & Management, Vol. 38 No. 3, pp. 381-400.

Berg, S.A., Hoffmann, K. and Dawson, D. (2010), "Not on the Same Page:
Undergraduates' Information Retrieval in Electronic and Print Books", Journal
of Academic Librarianship, Vol. 36 No. 6, pp. 518-25.

Browne, G. and Cue, M. (2012), "Ebook Navigation: Browse, Search and Index",
Australian Library Journal, Vol. 61 No. 4, pp. 288-97.

Carlock, D.M. and Perry, A.M. (2008), "Exploring faculty experiences with e-books:
A focus group", Library Hi Tech, Vol. 26 No. 2, pp. 244-54.

Castiglione, A., De Santis, A. and Soriente, C. (2010), "Security and privacy issues in
the Portable Document Format", Journal of Systems and Software, Vol. 83 No.
10, pp. 1813-22.

Chao, H. and Fan, J. (2004), "Layout and content extraction for PDF documents", in
Marinai, S. and Dengel, A. (Eds.), Document Analysis Systems Vi,
Proceedings, Springer-Verlag Berlin, Berlin, pp. 213-24.

Chu, C.-H., Huang, C.-H. and Lee, M. (2000), "Building an XML-based unified user
interface system under J2EE architecture", in Multimedia Software
Engineering, 2000. Proceedings. International Symposium on, IEEE, pp.
208-14.

Déjean, H. and Meunier, J.-L. (2006), "A system for converting PDF documents into
structured XML format", in Document Analysis Systems VII, Springer, pp.
129-40.

Davis, P.M. and Price, J.S. (2006), "eJournal interface can influence usage statistics:
implications for libraries, publishers, and Project COUNTER", Journal of the
American Society for Information Science and Technology, Vol. 57 No. 9, pp.
1243-48.

Don, A., Zheleva, E., Gregory, M., Tarkan, S., Auvil, L., Clement, T., Shneiderman,
B. and Plaisant. (2012), "Exploring and Visualizing Frequent Patterns in
Text Collections with FeatureLens", available at:
http://www.cs.umd.edu/hcil/textvis/featurelens/(accessed 21 November
2012).

Geroimenko, V. and Geroimenko, L. (2001), "Visual interaction with XML metadata",
in Information Visualisation, 2001. Proceedings. Fifth International
Conference on, IEEE, pp. 539-45.

Hadjar, K., Rigamonti, M., Lalanne, D. and Ingold, R. (2004), "Xed: a new tool for
extracting hidden structures from electronic documents", in Document Image
Analysis for Libraries, 2004. Proceedings. First International Workshop on,
IEEE, pp. 212-24.

Harper, D.J., Koychev, I., Sun, Y., Muresan, G. (2006), "ProfileSkim - An Intelligent
Document Browser", available at:
http://www.comp.rgu.ac.uk/staff/sy/msProf.htm(accessed 5 July 2006).

Kani-Zabihi, E., Ghinea, G. and Chen, S.Y. (2006), "Digital libraries: what do users
want?", Online Information Review, Vol. 30 No. 4, pp. 395-412.

http://www.cs.umd.edu/hcil/textvis/featurelens/
http://www.comp.rgu.ac.uk/staff/sy/msProf.htm


Lawrence, S., Bollacker, K. and Giles, C.L. (1999), "Indexing and retrieval of
scientific literature", in Proceedings of the Eighth International Conference on
Information Knowledge Management, Cikm'99, Assoc Computing Machinery,
New York.

Liesaputra, V. and Witten, I.H. (2012), "Realistic electronic books", International
Journal of Human-Computer Studies, Vol. 70 No. 9, pp. 588-610.

Liesaputra, V., Witten, I.H. and Bainbridge, D. (2009), "Searching in a Book", in
Research and Advanced Technology for Digital Libraries, Springer, pp.
442-46.

Lin, J. (2009), "Is searching full text more effective than searching abstracts?", Bmc
Bioinformatics, Vol. 10.

Lu, W., Liu, D., Fang, F., Long, Q., Yuan, Z. and Zhang, M. (2008), "WHU-XML:
An XML based digital library system", in IT in Medicine and Education, 2008.
ITME 2008. IEEE International Symposium on, IEEE, pp. 380-84.

Luk, R.W., Leong, H.V., Dillon, T.S., Chan, A.T., Croft, W.B. and Allan, J. (2002),
"A survey in indexing and searching XML documents", Journal of the
American Society for Information Science and Technology, Vol. 53 No. 6, pp.
415-37.

Marchionini, G. and Komlodi, A. (1998), "Design of interfaces for information
seeking", Annual Review of Information Science and Technology, Vol. 33, pp.
89-130.

Moghrabi, C., Le, T.H., Roy, J. and Hachey, J. (2004), "Digital library resources
description", in Information Technology: Coding and Computing, 2004.
Proceedings. ITCC 2004. International Conference on, IEEE, pp. 632-37.

Moskovitch, R., Martins, S.B., Behiri, E., Weiss, A. and Shahar, Y. (2007), "A
comparative evaluation of full-text, concept-based, and context-sensitive
search", Journal of the American Medical Informatics Association, Vol. 14 No.
2, pp. 164-74.

Nelson, M.R. (2008), "E-books in higher education: nearing the end of the era of
hype?", Educause Review, Vol. 43 No. 2, pp. 40.

Paley, W. B. (2002), "TextArc: An alternate way to view a text", available at:
http://www.textarc.org/(accessed 21 August 2002).

Patel, A., Bakhtiyari, K. and Taghavi, M. (2011), "Evaluation of cheating detection
methods in academic writings", Library Hi Tech, Vol. 29 No. 4, pp. 623-40.

Patrick van, A., Pim van der, E., Evert, H. and David, K. (2000), "An interchange
format for cross-media personalized publishing", Computer Networks, Vol. 33
No. 1–6, pp. 179 - 95.

Rahman, F. and Alam, H. (2003), "Conversion of PDF documents into HTML: A case
study of document image analysis", in Signals, Systems and Computers, 2003.
Conference Record of the Thirty-Seventh Asilomar Conference on, IEEE, pp.
87-91.

Seadle, M. (2009), "COLUMN: ARCHIVING IN THE NETWORKED WORLD
PDF in 2109?", Library Hi Tech, Vol. 27 No. 4, pp. 639-44.

http://www.textarc.org/


Seng, J.L. and Lai, J.T. (2010), "An Intelligent information segmentation approach to
extract financial data for business valuation", Expert Systems with
Applications, Vol. 37 No. 9, pp. 6515-30.

Shaofeng, W. (2004), "A method of Java-based electronic document publishing
system", Electronic Library, The, Vol. 22 No. 4, pp. 351-56.

Sun, Y., Harper, D. J., Watt, S. N. K. (2008), "iSee: Using the Organizational and
Narrative Threads Structures in an e-Book to Support Comprehension",
available at:
http://www.comp.rgu.ac.uk/staff/sy/msPhD.htm(accessed 31 March 2008).

Thomas, S.W., Alexander, K. and Guthrie, K. (1999), "Technology choices for the
JSTOR online archive", Computer, Vol. 32 No. 2, pp. 60-65.

Uneson, M. (2005), "Tomorrow is File Endings: On Archiving Principles and
Archiving Formats", ScieCom Info, Vol. 2 No. 2.

Vasileiou, M., Hartley, R. and Rowley, J. (2009), "An overview of the e-book
marketplace", Online Information Review, Vol. 33 No. 1, pp. 173-92.

W3C. (2012), "e-Extensible Markup Language", available at:
http://www.w3.org/XML/(accessed 24 January 2012).

Watt, R.J.C. (2012), "Concordance", available at:
http://www.concordancesoftware.co.uk/(accessed 30 April 2013).

Zhang, B., Geng, Z. and Zhou, A. (2008), "SIMP: efficient XML structural index for
multiple query processing", in Web-Age Information Management, 2008.
WAIM'08. The Ninth International Conference on, IEEE, pp. 113-18.

Zhang, W. (2008), "Converting PDF files to XML files", Electronic Library, Vol. 26
No. 1, pp. 68-74.

Zhao, F. (2011), "On choosing the digital document's file format for long-term
preservation", in Communication Software and Networks (ICCSN), 2011 IEEE
3rd International Conference on, IEEE, pp. 370-72.

http://www.comp.rgu.ac.uk/staff/sy/msPhD.htm
http://www.w3.org/XML/
http://www.concordancesoftware.co.uk/

